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A potential function U ( r )  determines the so-called phase shift &(k), 
0 < k < GO, I = 0, 1, .... Conversely consider 6, (k) given, the problem is to 
find a function U ( r )  reproducing E1(k). 

In the case of no bound states U(r )  is uniquely determined by the 
phase shift. In the case of one or more bound states the phase shift 
and the energy levels of the bound states do not give sufficient infor- 
mation of the potential so that phase shift and energy levels may be 
reproduced by different functions. 

In the case of sufficiently large I there will be no bound states and 
the problem of uniqueness of U(r )  does not arise. In the present in- 
vestigation we consider for simplicity the s-scattering, Z=O, which is the 
most favorable for formation of bound states. These are therefore taken 
into full  account. 

* The portion of this work done at the University of Wisconsin Theoretical 
Chemistry Institute was supported by Grant NsG-27562 (4180) with the National 
Aeronautics and Space Administration. The research carried out at the University 
of Florida w88 partially supported by the National Science Foundation. 
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1. Introduction 

The author has treated the inverse scattering problem, i.e., calcula- 
tion of a perturbing potential from some known asymptotic phase shift, 
in a former paper [l] from 15 years ago and shown that only the phase 
shift, &(k), for a single azimutal quantum number is needed to deter- 
mine the potential function U(r ) .  The idea of that paper was to produce 
a real working method by which calculation of the potential in actual 
cases could most conveniently be performed. The extension of the theory 
to the more general case of some bound states being present is given 
in this investigation, whereas for the sake of simplicity it has been 
restricted to the X-scattering and X-states. 

I n  recent literature [2, 31 the former investigation appears forgotten 
(ref. [2]) or very little recognized (ref. [3]). From these references we 
are picking UP only a few papers [a, 5, 6, 7, 8, 91 which obviously are 
considered particularly prominent. 

The reason for the method presented here and in the former publi- 
cation remaining non-recognized appears to be the overwhelming interest 
for existence and uniqueness problems. The latter leading to studies of 
ad hoc constructed phase shifts and corresponding potentials of a some- 
what potological shape and hence, of restricted physical interest. As a 
whole at  least the papers from later years may be considered similar 
and in mutual agreement in the sense that they are accepting the 
Gelfand-Levitan integral equation as a cornerstone of the whole inver- 
sion problem. 

The most useful papers for comparison studies has for me been the 
investigations by Jost and Kohn, because of the explicite solutions 
found there. In  fact the solutions I am point.ing to, and which will be 
used here for comparison, are obtained independently of the Gelfand- 
Levitan equation and only shown (if proved to be correct) to lead to 
the particular form of that equation. 

As has been proved in this paper the Jost-Kohn solution is only an 
alternative solution of that which is obtained straight forward from the 
present theory. This alternative solution follows, however, also from the 
present theory if the roles of the constituents Y’ and Z of the biortho- 
normal functional system are interchanged. 

This alternative solution unfortunately has serious disadvantages in 
comparison with the direct one as used here. The most characteristic 
feature of the difference is that the occurrence of asymptotic amplitudes 
u(k) and u( - k) separately in the Jost-Kohn solution requires a difficult 
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computation of these quantities, whereas in the straight forward solu- 
tion the amplitudes themselves are not needed but only their ratio 
u( - k) /u (k )  = e2*6, i.e., the asymptotic phase itself. 

Since the Jost-Kuhn solution is in accordance with the particular 
form in which so far the Gelfand-Levitan equation is appearing, it 
follows t h a t i f  the Gelfand-Levitan theory is to be used a t  all-it must 
be considered subject to modifications and should be presented in some 
more adequate form. 

2. Reciprocal Vector Systems and Systems of Biorthonormal Function 

At the time of my first investigations, on consulting prominent mathe- 
maticians (J. v. Neumann, H. Weyl, etc.), it  appeared that the con- 
ception of biorthonormal functional systems was unknown in mathe- 
matical literature. It may therefore be suspected still to be so.* For 
this reason I want to give an exposition showing how simple and natural 
this conception is. 

Consider in an n-dimensional space an orthonormal vector system a i ,  
hence obeying the relations 

aial,=dix. 
Let this system be expressed by its components in a coordinate system 
defined by another system of orthonormal vectors ei , i = 1,2, . . . , n, so 
that we are able to define a definite system of transposed vectors &, 
whose components are the columns of the matrix a, having as its rows 
the components of the vectors ai. Then from (1) we have the matrix 
equation 

aC= 1 

and from simple considerations also 
&= 1, 

or ai & = dik .  

Eq. (1) is the orthonormality and (2a) the completeness relation. This 
is seen from putting for an arbitrary vector r 

r=Criai, ri=rai. (3) 
I 

In order that these equations be true, we find on inserting the former 
in the latter that (1) is a necewry condition. Conversely, on inserting 
the latter in the former, using in between the notation r; =rei, 

* Later on I have learnt from different sources that they are known and d o p -  
ted by mathematicians under the above name, from what time I do not know. 
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if eq. (2a) holds. Hence also this relation is a necessary condition for 
eqs. (3) to be both true. 

Similarly for an orthonormal functional system yn (r), 

we expect the following expansion theorem for an arbitrary function F(r )  

Again inserting the former equation in the latter, the equations are true 
only if the orthonormality condition of eq. ( 5 )  holds. Conversely, in- 
serting the latter in the former we find the result 

to be true only on the condition that 

which is the completeness relation. 
The difference between an n-dimensional vector and a functional 

space of an infinite number of dimensions is that in the former case 
the completeness relation follows immediately from the orthonormality 
relation, whereas in the functional space the completeness relation may 
or may not be true for an orthonormal system. The expansion theorem 
presupposes the validity of the completeness relation. 

Now let us turn to a non-orthonormal system of vectors ai ,  i = 1, 
2, . . . , n. Just as in the three-dimensional case of b, = (az x a,) /A, A = 

a1(a2x a3) a vector bi may be found which is orthogonal to any vector 
ak,  k * i and whose scalar product with a, is 1. Hence we may find a 
vector system b i ,  which is said to be reciprocal to the system ai (and 
vice versa). The two systems form what may be called a biortho- 
normal system, instead of reciprocal systems, having the orthonormality 
Property 

ai bk = 6 i k .  (9) 
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The expansion theorem now reads 

r = I r i a i ,  ri=rbt,  
I 

and eq. (9) follows on inserting the former equation in the latter. Con- 
versely, as before inserting the latter in the former we deduce the 
completeness relation, 

i k  6 i k .  (10) 

The generalization of these results to a functional space of infinite 
dimensions is the expansion theorem 

the correctness of which requires 
relations 

C,, ( r )  z, ( r )  dr = dn, , 
J " ' - '  

the orthonormality and completeness 

For functions with a continuous parameter k, instead of the discrete n, 
and with the expansion formulae 

the analogous relations are 

only in the case of, say, yk(r)  forming by itself an orthogonal system, 
which can easily be modified into an orthonormal system, the two 
systems yk(r)  and z k ( f )  become identical systems. 

If therefore for an unknown function F(r) we have an integral equa- 
tion 

Fk = b(.) yk ( r )  dr, (13) 

where Fk is known as a function of k and where the functional system 
is non-orthogonal, we shall first have to look for another system zk(r) 
forming together with yk( r )  a biorthonormal system, as expressed in 
the first eq. (124. Then the solution is 
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F(r)  = Pkzk(,(r) dk, s 
provided the completeness relation of the second eq. (12a) is also valid. 

This is just the main point of the present investigation that the 
equation connecting phase shift 6 and potential U(r)  in scattering theory 
presents itself in the form (13). Therefore the introduction and con- 
struction of biorthonormal systems of functions is suggested by the 
inversion problem itself. As far as my spare information reaches this 
is the first application of biorthonormal functional systems to quantum 
mechanical problems. 

3. Wave Equations, Definitions and Notations. 
Auxiliary Potential Functions and Wave Equation 

Consider in the regions 0 < r < 00, 0 < k < 03 the wave equation 

i t  will possess independent solutions uniquely determined by the asymp- 
totic values 

where t = t ( k )  or & is the asymptotic phase. 

with given asymptotic values 
For convenience we introduce another set of independent solutions 

by means of which we may write 

With the abbreviated notations u( k k, 0) = u( k k) we find from the re- 
quirement y1 (0) = 0, 
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The asymptotic values of the solutions a t  r=O,  hence are 

Y2(0)= IWL 

the latter value following from the Wronskian 

WY,, YJ = y; yz - y1 = k7 

as seen from the asymptotic values (14a). 
We now introduce an auxiliary potential V(r )  and a corresponding 

and define solutions z, and z2, v(k,  r )  m d  a( - E, r )  and a phase shift q 
as in the preceeding equations. Then by combination of (13) and (18), 
using asymptotic expressions, the following relation is obtained, 

( V -  P) Yk(r)df= (19) 

m 

with F ( r ) = /  ( U -  V ) d r ,  U -  V =  -F'(r), 
I 

Here our first problem is to find a functional 
together with YL(r) an orthonormal system 

/ Yi ( r )  2,. (7 )  dr = d(k - k'). 

A function leading to relation (19) is 

P(r) = sin ( t -q )&(r )dk .  s 
On inserting (19) in (21) it is found, however, that the equation is true 
only on the condition that 

Yi (r') & (Z) dk = d(P - r'), (22) 

the completeness relation, holds. 
* - 631061 
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4. The Function & ( T )  and the Inversion Formula 

The asymptotic form of the function YL(r) is 

Y;  (r )  + sin (2kr + & + q k ) .  (23 ) 

Hence, in order that eq. (20) be true it is necessary that 

Because of the non-orthonormality of the system Y;(r )  we cannot take 
&(r) = (4/lr)YL(r). There is however another very simple way of obtaining 
(23a), namely by putting 

(24) 
4 

z , ( r ) = ; [ Y 1 Z z + Y 2 ~ 1 3 ,  

as easily seen from the asymptotic formula (14a). 
It is essential now to prove that this choice satisfies the ortho- 

normality condition (20). The simplest way is maybe to  prove the 
equation 

(25) 
d d 
dr dr 4 ( k 2 - k ‘ 2 ) Y ; Z v + -  W ( Y ; , Z k ) = - R ,  

with the definition (17a) of the Wronskian, and with R being an ex- 
pression in y l k ,  Z l k ,  Y l k ’ ,  yzk., Z I P ,  Z2k. and their derivatives which vanishes 
identically a t  r = 0 and as r + 03, as explained in detail in ref. [l]. 

Since YL(O)=O and Z,(O)=O the Wronskian vanishes a t  r + -  and 
its asymptotic value is easily found. The result is that 

as R+O. 
Another way of proving the result is to write 

and integrate the latter term from r=O to r = R ,  where R is large 
enough for the asymptotic expressions to be valid. We first find that 
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E' 
k = [COS ( 5 k - q k ) - C O S ( 2 k R + 5 k + q k ) ] - 6 ( k ' ) .  (26a) 

On the other hand, i t  is found that 

Integrating the expression and using asymptotic formulae it is found 
that 

Adding the asymptotic expressions (26a) and (26c) we just have the 
result (25 a). 

The only possible solution of the inversion problem in the case of 
no bound states is now that of formula (21). It is easily Been that 
for real k we may write 

and, since 5 and 9 are antisymmetric in k and u* = u( - k, r )  etc., it is 
readily found that 

F(r)  = jom sin (5 - q)kZk(r)  dk = - 1 [e2'€- 22i'1] uvdk, (27 a) 
x j-= 

using the phase shift equation (16) and the corresponding e2'q = u( - k) / v (k ) .  
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5. The Inversion Problem Including Potentials with Bound States 

Writing (15a) by means of (16a) in the form 

it is seen, by putting k =  i x ,  u( & k, r)+eTXr, that the condition for 
stationary states to exist is 

u(k) = 0, k = i x ,  (29 a) 

and correspondingly for the potential V(r ) ,  

v(k) = 0, k = k’ = ix’ .  (29 b) 

Because of the denominator lu(k) I = [u(k) u( - k)]* eq. (29) provides no 
more a suitable expression for yl(r) .  Nevertheless forgetting for a while 
about the normalization and considering, after deletion of the last term, 
only u( - k) u(k, r )  it is seen to have the proper asymptotic form a t  
r=O as well as when r+m. 

We now suggest the inversion formula (28) to be replaced by 

where C is a path of integration in the complex k-plane 
the real axis all the way, but avoiding by loops possible 

(30) 

not following 
zeros of u(k) 

and v(k) on the positive imaginary axis, i.e., keeping those zeros to the 
right, however all other possible singularities on the positive imaginary 
axis to the left. 

Retracting again our path of integration to the real k-axis we have 

the sums being by hypotheses (30) the contributions from the bound 
states of U(r)  and V(r ) ,  respectively. The k-values kn = ix,,, kh = i x k ,  
n = 1,2, ..., N ,  m= 1,2,  ..., dl are the zeros of u(k) and v(k) ,  respec- 
tively, and the dots denote derivation with respect to k. It should be 
noted that the admitted inconvenience of the factor (u(k)l in the de- 
nominator of (29) has disappeared owing to the presence of the same 
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factor in sin ( E  - 17). This gives a product u(k)  u( - k)  which produces 
simple poles in the integrand and by complex integration these poles 
are replaced by their residua. The inclusion of bound states necessitates 
however a redefinition of the functions Y and Z. 

Consulting when needed the detailed notation of eq. (31) we may 
venture to use some simplified notations. For instance we write 

2 = uu, (32)  

which in either case has the asymptotic values 

Next we take the forms 

requiring h i  defk5teness that z(O)=O, g ( O ) = O ,  and 

W(Z, u )  = 2, W(u,  9) = - 2 .  
This means that 

x 

- k, r) - 
x u ( k )  

u (k ,  r)], 

since with k =  i x  

(33aj 

W ( W * , V ) =  - 2 i k = 2 ~ ,  W ( ~ , ~ * ) = 2 i k =  -2%. (33 c) 

Now if we require for any pair Y ,Z  that 

we have 

and correspondingly MkL = lom U2 dr. (34 b) 
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Using the results as presented in eq. (25) or eqs. (26) one easily finds 
that any z k ,  or Z& belonging to the closed system is orthogonal to 

any Y',  whether belonging to the open or the closed system, except 
its counterpartner YL, or Ykm, and vice versa. 

We now need only the integral over F ( r ) Y ; ( r )  to establish our in- 
version formula. The integral is found to be 

1 2 lom F ( T )  Y ;  (r)  d r  = lom [u(r) - ~ ( r ) ]  Yk(r) dr = - W(Z, = - , (35) 
N k  N k  

and similarly 

Subtracting from F(r )  in (31) the contribution Fc(r )  from the continuum 
and calling the difference F d ( r ) ,  we have 

2 2 
n Nk, rn Jf& 

F d ( r )  = C - U ( k n ,  r )  V(k , ,  r )  v(kn, r )  - Z-u(k;, r )  v(kh, r ) ,  (36) 

provided 

This is just the result which follows from (35) and (35a) for normalized 
biorthogonal functions Y ;  and Z, as defined according to (32), (33) and (34). 

Eqs. (36a) are evidently true, but experience is better than logic, 
so we rather give a direct proof. The proof is most easily obtained by 
using the following equation for u(k ,  r )  as obtained from our wave equa- 
tion by differentiation with respect to k, 

(36 b) 1 ( @ + k ' + U ( r )  d2 u+2ku=0. 

Combining it with the undifferentiated equation we find 

4 k O )  - W )  - N k ,  1 1 
/omu2dT = W(u,  zi); = - - U' (k, 0) u(k ,  0) = 2k iu( - k, 0) iu( - k) 

(36 c) 

(36 d) 

since from W(u,uS)=2ik  we have 

u'(k) u( - k) = 2ik. 

Hence the true meaning of Nkm and similarly of Mk; in (36a) is clear. 
The procedure is now to guess a t  some convenient potential V ( r )  

giving solutions v( & k, T )  with e2{q = v( - k) / v (k )  as near as possible to e2'€, 
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or, with '7 = arg u( - k )  possibly nearest to 5. Simultaneously one should 
want the k k = i x h  as near as possible to k,=ix,. When that is not 
accurately obtained F(r) * 0 and U(r)  * V(r). For the difference U(r) - 
V(r) we can however obtain only an approximation, since u(k, r) is un- 
known and must be replaced by a(k ,r ) .  This approximate difference 
serves to find an approximate potential Ul(r), which by repetition of 
the process is used for a better auxiliary potential Vl(r). 
Since any Nk,, = zi(k,)/iu( - kn) is unknown from the measurement of 

[ ( k )  and the E,= - x z ,  there is for each stable state a parameter Nk 
a t  disposal, each of them allowing for an infinity of solutions of the 
problem. 

Consider now the case of two potentials U(r) and V(r) giving the 
same phase shifts q ( k )  = &k) and the same binding energies, i.e., kh = kn. 
Still F(r) may be different from zero, 

the pokiitia! difference hence being 

This result has been observed by the author in 1948 and published in 
a less accessible journal [lo]. 

6. Applications to  Elementary Potentials 

The general inversion formula (30) has been checked by some simple 
potentials of the short range type. .In particular ita validity for the 
following potentials has been proved [ll]. 

Example 1. 

U(r)=I(A+ l)a'(l -tgh'ar), V(r )=p(p+ l)#?'(l-tgh'#?r). (38) 

Example 2. 

These examples provide a greet variety of potential curves. The former 
give curves of a finite, however arbitrary depth together with arbitrary 
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range. The latter has an infinite depth, a pole a t  the origin, and re- 
minds very much of the Yukawa potential. Its strength as well as its 
range can be regulated a t  will by the two parameters I and a (or p 
and B )  and hence can have an arbitrary number of closed states. 

The demonstration is however lengthy and we shall be satisfied by 
proving the simpler case 

V(r )  = 0, v(k ,  r )  = eikr (39) 

for which the inversion formula, with U ( r ) =  - F'( r ) ,  .turns into 

P(r)  = - 1 1 ["'-" - 11 u(k ,  r )  eikr dk. 
72 c u(k)  

Next, we shall make a further simplification in choosing in the first 
example a = l  and in the second example a=2. 

Example 1. 

U ( T )  =I(A+ 1) (1 - tgh2 r ) ,  F ( T )  = I ( I  + 1) (1 - tgh r ) .  (41) 

We shall write the solution in two versions, by means of hyper- 
geometric series 

u ( k , r ) e " ' ( T ) * = F (  1- tghr  - i k - I ,  - i k + I + l ,  - 1 - tghr 
2 

i k + l , -  

, - i k + l ,  l-tgh'r 
ik I ik 1+1 = p  _ -  _ -  --+- 

( 2 2 , 2  2 

(41 b) 
the former being used in (40) and the latter to obtain the asymptotic 
amplitudes 

The poles of u( - k )  are evenly distributed along the positive imaginary 
axis, k = i n ,  n= 1,2, ..., 00, and with 

( I + n ) !  
(n - 1 )  ! n ! ( A  - n) ! 

8, = 
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where is, are the residua of u( - k) /u (k )  at  the above poles of u( -k). 
Hence 

(41 e) 
The first term gives in accordance with (41) 

P(r) =&I + 1) (1 - tgh Y) (41 f )  

and it is easily seen that higher terms in powers of 1 - tgh Y cancel. For 
instance the coefficient of (1 - tgh Y)' is 

&A(A + 1) (1 -A)  (A + 2) + f ( A  + 2) ( A  + 1) ].(A - 1) = 0. (41 g) 

Example 2. U(r )  = 41' e-2r/(1 - e-cr), (42) 

F(Y) = 2A' log [l/( 1 - e-2r)] = 21' [e-2r + + + . . .]. (42 a) 

(42 b) With the abbreviation 

the solution writes 

--+Z, ik -ik+l,e-") (42c) 
2 

with the asymptotic amplitudes 

( -  i k ) !  ( ik ) !  
, ~ ( - k ) =  (42 d )  u(k) = - 

This gives for the residua is, of u( - k) /u (k )  in the poles of u( - k) 

( I . + ; -  1) ! [ (L-;)! I- 2 
(n- l)! n!  

8, = 

The calculations are best illustrated explicitly by 
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n F(r)  = 2 29, e-2flrF 
fl-1 

in conformity with (42a). 

7. Comparison with Other Theories 

A full comparison with current theories is highly impeded by the great 
number of investigations from a 15 years period (refs. [2] and [3]), 
which, moreover, as a rule are of a fairly sophisticated mathematical 
form. To the extent of my knowledge, however, no serious mutual dis- 
agreement is found and they appear much alike in one respect, namely 
in accepting the Gelfand-Levitan equation the cornerst.one of the theory. 
To my knowledge none of them follows the pattern of this work. There- 
fore it appears adequate to restrict the comparison to a few investiga- 
tions of an accepted prominent character, of which the Jost-Kohn in- 
vestigations (Ref. 6) are more explicit and hence afford the easiest basis 
for comparison. Using the simplification V ( r )  = 0 their inversion formula 
reads in our notation 

u( - k) u(k, r )  [eBr - e-*'] dk. (43 a) 1 
This result looks indeed very different from (36) and one may wonder 
why the asymptotic amplitudes u( f k) are now separately needed with 
their fairly formal and impractical deduction from the phase shift 5, 
whereas in (40) we need only their ratio which is identical with the 
simple function e2'c. 

Apart from this objection from the point of view of convenience, the 
form of the function (r)  does not appear quite proper, since in general 
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it will be a nonvanishing constant a t  infinity and hence not integrable. 
It appears advisable, therefore, to take the formula in the more direct 
form 

1 1 d 
U ( r ) =  -; I C [ a - u ( - k ) ]  dr - { ~ ( k , r ) [ e ~ ' - e - * ' ] ) d k ,  (43b) 

which in some sense might be thought of as applicable even to Ex- 
ample 2, eq. (a), for r>O, for which (43) becomes meaningless. 

I f  (40) and (43b) are both to be true, there must be some logical 
connection between them allowing for the deduction of one of them from 
the other. It appears worth while, therefore, to try whether an inter- 
change of the constituents of the binary orthonormal system might 
afford an explanation. 

With & ( f )  = (4/n) (ylzz -k yz%), and for simplicity V(r)  = 0, zl = sin kr, 
z2 = cos kr,  consider therefore the integral 

r m  

From the wave equations and asymptotic exprewiom 

k Iom U(r)  ylzzdr  = lim W(z,, y,): = - k cos 5 + - (44 a) 
R-*m I u(k) I' 

hence 

Relying now upon the completeness of the binary system 

(44d) 
1 -  =--I n -m [&- 

in the absence of bound state. In the same way as used before this 
formula must be generalized into (43b) when bound states are present. 
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At the first sight the one formula (40) or (43b) appears just as good 
as the other since Yk(r) and Z,(r) have the same asymptotic shape 
both a t  r=O and as r + m .  There is however a difference if, as in 
Example 2, the potential U ( r )  has a pole in r=O, which of course is 
a most interesting case (cf. the Yukawa potential). In that case F(r)  
is an integrable function down to r=O whereas U ( r )  is not. 

When u ( k )  and u( - k) are separated as in (43) and the zeros of u ( k )  
are to be avoided by the contour C i t  appears as though u ( k )  might 
be deleted. This is true, however, only after the contour C has been 
closed by a large semi-circle in the upper half-plane of k. This can be 
done because of u( & k) + 1 as k-t - , and now the contour C may be 
contracted into small circles around the poles of u( - k), the residua 
being is,u(k,). We first try 

Example 2. (45) 

With the abbreviation 

(45 a)  
we may write 

d 
n-1  dr 

00 

U ( r ) =  - 2 2 s , ~ ( i n ) - - ( [ e ~ ~ " ' - l ]  F,}, 

where s, is given before in (42c) and 

n! u(in) = 

(;+1,) ! (;-1,) !. 

(45 b) 

(45 c) 

This formula is extremely difficult to use in general, owing to the 
more intricate form of u(in) in comparison to s,. There are no simpli- 
fications obtained by choosing particular values for 1 except A=O.  In  
that case we have u(in) = 1 and to the first order of 1' 

A 2  
n 

8 =- n .  (45 d) 

To that order also all F, may be replaced by unity, and so from (45b) 
we obtain 
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in conformity with (45). 

we have now I (O , r )= l .  It appears that I (1 , r )  considered a function 
of the variable ?,-irrespective of its dependence of r-is an integral 
function. If in addition this function is regular even at infinity it is a 
constant, and to determine that constant only a single functional value 
as I ( 0 , r )  is needed. 

This is only a statement that the inversion formula (45b) may be 
correct. Note that l'I(1, r )  has a singularity a t  1 = 00 and hence is no 
constsnt . 

In  Example 1, eq. (41) we have better luck, owing obviously to the 
accidental cancelling of an infinite number of poles and zeros in u( - k) 
for integral 1. The inversion formula is found to be 

n - 1  n + l + 1  

(46a) 
2-"(1+n)! ( -4 ) !  with anu(in) = 

For integral 1 we have finite sums, for 1=1 we have n = l ,  for 
1 = 3 ,  n = l , 3 ,  etc., and similarly for A=2,4,6 ,..., n=2,  n = 2 , 4 ,  n =  
2,4,6. 1 = 1 and 1 = 2 are easily seen to give 2(1- tgh2 r )  and 6(1- tgh'r). 
For 1 = 3  the terms n = l , 3  and their sums are as follows, 

- 3[;(1- tgh' T )  - v(1- tgh' T)'] 

+ 15[g(1- tgh' T )  -9(1- tgh' T)'] = 12(1- tgh' T ) .  (46 b) 

"he calculations are easily extended and show that the result is 

U(r)=1(1+1) (l-tgh'r)I(iZ), (47 1 

where I(1)  is unity for positive integral 1. Replacing 1 by -(A+ 1) 
formula (46) is unchanged and I(1)  is unity for 1 = -2, - 3, ... . Finally 
as I - t O  (46a) becomes 
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1 + l - n  
(7%-l)! (1-n)!  

s,u(in) = (47 8) 

with the only term slu(i) being different from zero. Therefore as is 
easily seen also for I = 0 ,  and hence for a =  - 1 the function I(1) is 
unity. 

Since the expression (46a) has no singularity in the entire complex 
I-plane and since, moreover, the series (46) appears convergent for 
any 1, the function I(I) must be an integral function of I. If, more- 
over, it is regular a t  infinity, i t  is a constant whose value is unity. 

This does not however mean that formula like (43b) and even less 
(43 a)-usually referred to as based on the Gelfand-Levitan equation- 
are equivalent to formulae of the character (40). This is most clearly 
demonstrated by the simple dependence of u( - k)/u(k) on the phase 6 
and the usually only formally feasible calculation of the phase amplitudes 
u( k )  from 6. Therefore the Gelfand-Levitan equation appears to me 
having a somewhat ad hoc character, in particular through the unfor- 
tunate factor I/u(k) u( - k) - 1 as originating mainly from a particular 
normalization of the solutions of the basic wave equation. If a t  all 
needed a more suitable form of the Gelfand-Levitan theory might pos- 
sibly be found. 

As long as the conception of binary orthonormal systems is not 
applied, rational formulae for the inverse problem are not obtainable. 
It is as though expressing vectors in an oblique coordinate system, one 
would refuse to use the reciprocal system. 

8. Remarks on Completeness Relation Proofs 

The validity of all previous results rests on the supposition of ful- 
filment of one of the three conditions, which of course automatically 
implies the fulfilment of the other: 

( 1 )  An independent proof of the completeness of the system YL(r), 

(2) K(r,r’)  as used by Jost and Kohn and in the Gelfand-Levitan 
theory being a solution of the Gelfand-Levitan integral equation. 

(3) u(k ,  r )  or yl(k, r )  as expressed by means of a certain kernel K(r ,  r’)  
in form of an integral equation being a solution of the wave 
equation. 

&(r).  

The latter verification has been tried by Jost and Kohn (Ref. 6). 
For the rest, completeness relation proofs are sparse and sometimes 
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doubtful. Even the proof of the completeness of the ordinary ortho- 
normal system yl(k,r), u(kn,r), which for convenience may be written 
in the form 

2 I ~ y l ( k , r ) y l ( k , r ' ) d k + ~  -u(k,,r)u(kn, 1 r')=d(r-r') (48) 
I t 0  n Nk,, 

appears in the presentation given in ref. [3] (L. D. Faddeyev) fallacious. 
We give here the following analysis. 

Consider a kernel L(r, r') with the properties 

{$ + kZ + U(r') L(r, r') = 0, 1 

and finally L(r, 0) = 0. 

vaiue j (Oj=O.  Then from 
Next consider a twice differentiable function f(r) with the boundary 

1 Iornf(r') [2+kz+u(r"  L(r,r')dr'=O 
d2 

we obtain by partial integration 

(49) 

Multiplying the latter equation by idk/kx and integrating over an in- 
finitely large semi-circle C' in the upper half of the k-plane extendmg 
from k =  - 00 to k =  + 00 we need not care about the term 

-+ U(r') f(r') [ a 5  ] 
which is finite since, as we shall see L(r,r') is of the order of magni- 
tude l/lkl. Hence, 

f(r) = $ IC dk Jornu(r, r') f(r') dr'. (49 b) 

The kernel is given by 
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To see the implication of (49b), multiply (49c) by elc=,( -k)/lu(k)I 
and introduce y1 (k, r )  by its expression in terms of u(k, r )  and u( - k, r )  
to obtain for r’ 5 r ,  respectively, 

Contracting the semi-circle C’ down to the former C ,  forgetting about 
the singularities of u( - k), and next down to the real axis, taking care 
of the zeros of u(k), and finally transforming half the integral from 
- w to 0 into a corresponding one from 0 to + w ,  the result would 

be the equation 

which is equivalent to (48) in the domain of functions to which the 
arbitrary function f ( r )  belongs. 

What has been forgotten by this procedure is, however, in the case 
of simple poles of the asymptotic amplitude u(-k) the in general in- 
finite series 

iResu( -kh)  Io u(k&, r )  u(kk, r ’ )  f ( r ’ )  dr’. (50a) 
m 

This series must be zero, which is difficult to prove, and i t  has not 
been proved as, moreover, the author has not been aware of it. 

In  the treatment given by Jost and Kohn the following integral 
equation appears, in our notation and with the simplification V(r )  = 0, 

(51) I u ( k )  I yl ( r )  =sin kr + K ( r ,  r ’)  sin kr‘dr’.  

It may be thought of as an integral equation for the kernel K(r , r ‘ ) ,  
but even if the kernel is known it  remains an integral equation for 
yl(r) since K(r , r ’ )  is expressed by means of yl(r). 

The conditions for yl(r) to be equivalent with the former solution 
yl(r) of the wave equation are 
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the correct asymptotic value of y1( r )  as r+O being already ensured by 
the form of (51). 

Comparing with eq. (43a), it is seen that the kernel is 

u( - k) u(k, r )  [e*f - e-nf]. (51 b) 1 1 1 

It satisfies the first eq. (51a) and it may satisfy the second. In par- 
ticular this is true if eq. (51) is correct, so one may try to evaluate 
the integral in (51). 

Since the zeros of u(k) are avoided in (51 b) the evaluation of the 
first part of the integral (51) is simple. Using the asymptotic values 
u(k)+l, u(k,r)+eilrr as Ikl+c= it gives -$sink?. In  the second part 
of the integral the contour C may be drawn down to the real axis 
to give an integral 

I r m  
J =  -- ~ u (  - k') u(k', r )  - 2i \ j0 dr' - j"rm&rf] aii; F +  si3 i%r' = J1 + J,. 

2n -m 

(51 c) 
r 

It is easily seen that 

J =- dk'u( - k') u(k', r )  [6(k - k') - 6(k + k')] 
2Jm 

(51 d) 
1 
2i 

= - [u( - k) u(k, r) - u(k)  u( - k, r ) ]  = lu(k) I y, ( r ) .  

In  the remaining part of the integral, 

J, = sin dku( - k) u(k, r )  [e&' - e-*+j, (51 e) 

since r' > r, the path of integration for the latter part may be deformed 
into large semi-circle C" in the lower half-plane, where u( - k ) + l  and 
u(k,  r )  +e*', to give a contribution 

- J dr' sin kr' 6(r - r')  = - 4 sin kr. (51 f )  
r 

In  the first part of th9 integral the path of integration must be deformed 
into the former semi-circle C' in the upper half-plane to give 
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To this, however, must be added the contributions from the poles 
k,= ix, of u( - k) with the net result that 

J\ K(r ,  r') sin kr'dr' = [ u ( k )  I y1 ( r )  - sin kr + J,, 

J ,  = 2 i Ret;u( - k,) u(k,, r )  
n 

(52 a)  
n 

= 2 i Res u( - k,) u(k,, r )  3 k,+k k,-k 

and it will be hard to prove that this expression is zero. 

the integration in dr' in (51c) to give 
The Jost-Kohn procedure is somewhat different in performing first 

sin (k' - k) r sin (k' + k) 
k - k  dk'u( - k') u(k', r )  --7 ~ - _____- 

or, to prepare a deformation of the contour into t.he upper half-plane 

1 roo 

J=I J dk'[u( - k ' )  u (k ' ,  r )  - u(k ' )  u( - k ' ,  r ) ]  
2ni -m 

If k is slightly 
on deforming the 
k '=k  or k'= - k  

above or slightly below the real axis it is seen that 
pat'h of integration we have to pass a single pole in 
giving just the contribution lu(k) I y( r ) .  If k is on the 

axis we may before the integration in dr' make a loop to include, 
say, the pole k = k' and exclude k = - k' with the above result. 

In the part of (53a) containing only u(k ' )  we may now pass to the 
semi-circle C', where u(k ' )  -+ 1 and u( - k', r )  -+e--ik'". This gives the 
contribution 

sin kr  dk' 1 . 
2ni IC, k' = 

- - sin kr. 
2 (53 b) 

Forgetting about the poles of u( - k ' )  we get in a similar manner the 
contribution 
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sin kr eZi k' dk' 
- XlC, k'= 0. (53 c) 

Again there remain the contributions from the poles of u( -k'), which is 

J3 = 2 i Resu( - k,) u(kn, r )  - Q  
n k n + k  k , - k  

the same expression as (52a). 

9. Integral Equations Related to  the Problem 

The integral equation most frequently used for the inverse problem 
is that of the type (51) for the solution yl(r) of the wave equation. 
More in line with the present treatment is 

u(k, r )  =ear - K(r ,  7') eilrr'dr'. (54) 
I T m  

We may a t  once presume that the kernel K(r ,  r ' )  obey the equation 

which simply means that it is built up from products of solutions of 
the wave equation 

and corresponding circular or exponential functions with different argu- 
ments r and r' and summed or integrated over the parameter k. 

It is found quite elementarily that 
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Therefore from (54) 

d r  (55) 

and the condition that u ( k , r )  becomes a solution of (54b) is that 

If the formulae presented in this research are correct, as they are bound 
to be if our binary system is complete, the kernel in the case of V ( r )  = 0 
can be found from (27a) or (40) as 

sin Lfk [yl ( r )  cos kr' + y2 ( r )  sin kr'], dk  

- 
- -k ICl u ( k )  1 - 1 u ( k ,  r )  eikr'dk. 

The former expression of course is incorrect in the case of bound states 
and must be taken only formally. 

We now introduce the simpler kernel 

Then if K(r ,  r') = D(r, r') - K(r ,  r") D(r", r') dr" (57 a) 

we find by elementary operations 

If therefore two of the three equations (54a), (55a) and (57a) are true, 
the third is also true. 

Unfortunately, i t  is difficult to see how the correctness of (57a) for 
K(r ,r ' )  in (56) could be proved in any simple way. However, if the 
Gelfand-Levitan equation has so far proved to be of any practical use 
and not only a formalism, the same must be true for (57a). 
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10. Calculation of Potentials for Small Perturbations 

Let us write the wave equation in the form 

{$ + k2 + AU(r) (58) 

where U ( r )  is a characteristic potential function and A a variable para- 
meter giving the strength of the perturbation. Then we shall find a 
very interesting simplification in the case of A+O. 

The general integral equation for U(r)  = - F ( r )  or F(r)  now reads 

yl(r) sin krdr = A (yl sin kr)dr .  (58a) 

In  the limit A 4 0  we may replace yl(r) by sinkr and have 

This equation can readily be inverted to give 

AF(r) = + j w s i n f  sin2krdk. (59 a) 
n o  

Again, expressing sinE by means of the asymptotic amplitudes we have 

Let us now consider a potential function which can be expanded in 
a power series of e-2ar or rather e-2r such that 

F(r) = 2 2an e-2nr, (60) 
n-1 

which, on being introduced in (59), gives 
8 

Inserting in (59a) we regain eq. (60) in the following way, 
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on closing the path of integration in the upper half-plane and contracting 
i t  around the poles. 

On the other hand, for arbitrary A we would have from the general 
inversion formula 

W 

AP(r)  = X 2snu(in, r )  eCnr, 
n = l  

where is, is the residuum of u( - k ) / u ( k )  in the pole k = i n .  Hence we 
see that 

sn+Aa, as A+O, (61) 

where 2a, are the expansion coefficients of the integrated potential 
in (60). 

This is a remarkable connection which may be of some use in the 
further discussion of the theory. 
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